Wir benötigen Ihre Einwilligung zur Verwendung der einzelnen Daten, damit Sie unter anderem Informationen zu Ihren Interessen einsehen können. Klicken Sie auf "OK", um Ihre Zustimmung zu erteilen.
Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes
Automatische name übersetzung:
Standard Test Method for Messung der Rate der Absorption von Wasser durch Hydraulik-Zement-Beton
NORM herausgegeben am 1.2.2013
Bezeichnung normen: ASTM C1585-13
Anmerkung: UNGÜLTIG
Ausgabedatum normen: 1.2.2013
SKU: NS-11929
Zahl der Seiten: 6
Gewicht ca.: 18 g (0.04 Pfund)
Land: Amerikanische technische Norm
Kategorie: Technische Normen ASTM
Keywords:
concrete, initial rate of water absorption, mortar, rate of absorption, secondary rate of water absorption, ICS Number Code 91.100.30 (Concrete and concrete products)
Significance and Use | ||||||||||||||
4.1 The performance of concrete subjected to many aggressive environments is a function, to a large extent, of the penetrability of the pore system. In unsaturated concrete, the rate of ingress of water or other liquids is largely controlled by absorption due to capillary rise. This test method is based on that developed by Hall3 who called the phenomenon “water sorptivity.” 4.2 The water absorption of a concrete surface depends on many factors including: (a) concrete mixture proportions; (b) the presence of chemical admixtures and supplementary cementitious materials; 4.3 This method is intended to determine the susceptibility of an unsaturated concrete to the penetration of water. In general, the rate of absorption of concrete at the surface differs from the rate of absorption of a sample taken from the interior. The exterior surface is often subjected to less than intended curing and is exposed to the most potentially adverse conditions. This test method is used to measure the water absorption rate of both the concrete surface and interior concrete. By drilling a core and cutting it transversely at selected depths, the absorption can be evaluated at different distances from the exposed surface. The core is drilled vertically or horizontally. 4.4 This test method differs from Test Method C642 in which the specimens are oven dried, immersed completely in water at 21°C, and then boiled under water for 5 h. In this test method, only one surface is exposed to water at room temperature while the other surfaces are sealed simulating water absorption in a member that is in contact with water on one side only. Test Method C642, on the other hand, is used to estimate the maximum amount of water that can be absorbed by a dry specimen and therefore provides a measure of the total, water permeable pore space. |
||||||||||||||
1. Scope | ||||||||||||||
1.1 This test method is used to determine the rate of absorption (sorptivity) of water by hydraulic cement concrete by measuring the increase in the mass of a specimen resulting from absorption of water as a function of time when only one surface of the specimen is exposed to water. The specimen is conditioned in an environment at a standard relative humidity to induce a consistent moisture condition in the capillary pore system. The exposed surface of the specimen is immersed in water and water ingress of unsaturated concrete is dominated by capillary suction during initial contact with water. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. |
||||||||||||||
2. Referenced Documents | ||||||||||||||
|
Wollen Sie sich sicher sein, dass Sie nur die gültigen technischen Vorschriften verwenden?
Wir bieten Ihnen Lösungen, damit Sie immer nur die gültigen (aktuellen) legislativen Vorschriften verwenden könnten.
Brauchen Sie mehr Informationen? Sehen Sie sich diese Seite an.
Letzte Aktualisierung: 2024-11-04 (Zahl der Positionen: 2 209 323)
© Copyright 2024 NORMSERVIS s.r.o.