Wir benötigen Ihre Einwilligung zur Verwendung der einzelnen Daten, damit Sie unter anderem Informationen zu Ihren Interessen einsehen können. Klicken Sie auf "OK", um Ihre Zustimmung zu erteilen.
Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range (Includes all amendments And changes 1/16/2015).
Automatische name übersetzung:
Standard Test Methode zur Bestimmung der Referenztemperatur To , bei ferritischen Stählen im Übergangsbereich
NORM herausgegeben am 15.11.2013
Bezeichnung normen: ASTM E1921-13a
Anmerkung: UNGÜLTIG
Ausgabedatum normen: 15.11.2013
SKU: NS-43600
Zahl der Seiten: 25
Gewicht ca.: 75 g (0.17 Pfund)
Land: Amerikanische technische Norm
Kategorie: Technische Normen ASTM
Keywords:
ICS Number Code 77.040.10 (Mechanical testing of metals)
Significance and Use | ||||||||||||||||||||||||||||
5.1 Fracture toughness is expressed in terms of an elastic-plastic stress intensity factor, 5.2 Ferritic steels are inhomogeneous with respect to the orientation of individual grains. Also, grain boundaries have properties distinct from those of the grains. Both contain carbides or nonmetallic inclusions that can act as nucleation sites for cleavage microcracks. The random location of such nucleation sites with respect to the position of the crack front manifests itself as variability of the associated fracture toughness 5.3 Distributions of KJc data from replicate tests can be used to predict distributions of KJc for different specimen sizes. Theoretical reasoning (9), confirmed by experimental data, suggests that a fixed Weibull slope of 4 applies to all data distributions and, as a consequence, standard deviation on data scatter can be calculated. Data distribution and specimen size effects are characterized using a Weibull function that is coupled with weakest-link statistics (14). An upper limit on constraint loss and a lower limit on test temperature are defined between which weakest-link statistics can be used. 5.4 The experimental results can be used to define a master curve that describes the shape and location of median KJc transition temperature fracture toughness for 1T specimens 5.5 Tolerance bounds on KJc can be calculated based on theory and generic data. For added conservatism, an offset can be added to tolerance bounds to cover the uncertainty associated with estimating the reference temperature, To, from a relatively small data set. From this it is possible to apply a margin adjustment to To in the form of a reference temperature shift. 5.6 For some materials, particularly those with low strain hardening, the value of To may be influenced by specimen size due to a partial loss of crack-tip constraint 5.7 As discussed in 1.3, there is an expected bias among To values as a function of the standard specimen type. The magnitude of the bias may increase inversely to the strain hardening ability of the test material at a given yield strength, as the average crack-tip constraint of the data set decreases (16). On average, To values obtained from C(T) specimens are higher than To values obtained from SE(B) specimens. Best estimate comparison indicates that the average difference between C(T) and SE(B)-derived To values is approximately 10 °C 1.1 This test method covers the determination of a reference temperature, To, which characterizes the fracture toughness of ferritic steels that experience onset of cleavage cracking at elastic, or elastic-plastic KJc instabilities, or both. The specific types of ferritic steels (1.2 The specimens covered are fatigue precracked single-edge notched bend bars, SE(B), and standard or disk-shaped compact tension specimens, C(T) or DC(T). A range of specimen sizes with proportional dimensions is recommended. The dimension on which the proportionality is based is specimen thickness. 1.3 Median KJc values tend to vary with the specimen type at a given test temperature, presumably due to constraint differences among the allowable test specimens in 1.2. The degree of K Jc variability among specimen types is analytically predicted to be a function of the material flow properties (1)2 and decreases with increasing strain hardening capacity for a given yield strength material. This KJc dependency ultimately leads to discrepancies in calculated 1.4 Requirements are set on specimen size and the number of replicate tests that are needed to establish acceptable characterization of KJc data populations. 1.5 To is dependent on loading rate. T o is evaluated for a quasi-static loading rate range with 0.1< dK/dt < 2 MPa√m/s. Slowly loaded specimens (dK/dt < 0.1 MPa√m) can be analyzed if environmental effects are known to be negligible. Provision is also made for higher loading rates (dK/dt > 2 MPa√m/s). 1.6 The statistical effects of specimen size on KJc in the transition range are treated using weakest-link theory 1.7 Statistical methods are employed to predict the transition toughness curve and specified tolerance bounds for 1T specimens of the material tested. The standard deviation of the data distribution is a function of Weibull slope and median KJc. The procedure for applying this information to the establishment of transition temperature shift determinations and the establishment of tolerance limits is prescribed. 1.8 The fracture toughness evaluation of nonuniform material is not amenable to the statistical analysis methods employed in this standard. Materials must have macroscopically uniform tensile and toughness properties. For example, multipass weldments can create heat-affected and brittle zones with localized properties that are quite different from either the bulk material or weld. Thick section steel also often exhibits some variation in properties near the surfaces. Metallography and initial screening may be necessary to verify the applicability of these and similarly graded materials. Particular notice should be given to the 2% and 98% tolerance bounds on K1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. |
||||||||||||||||||||||||||||
2. Referenced Documents | ||||||||||||||||||||||||||||
|
Wollen Sie sich sicher sein, dass Sie nur die gültigen technischen Normen verwenden?
Wir bieten Ihnen eine Lösung, die Ihnen eine Monatsübersicht über die Aktualität der von Ihnen angewandten Normen sicher stellt.
Brauchen Sie mehr Informationen? Sehen Sie sich diese Seite an.
Letzte Aktualisierung: 2025-01-21 (Zahl der Positionen: 2 220 867)
© Copyright 2025 NORMSERVIS s.r.o.