Wir benötigen Ihre Einwilligung zur Verwendung der einzelnen Daten, damit Sie unter anderem Informationen zu Ihren Interessen einsehen können. Klicken Sie auf "OK", um Ihre Zustimmung zu erteilen.
Standard Test Method for Determining the Molar Mass of Chitosan and Chitosan Salts by Size Exclusion Chromatography with Multi-angle Light Scattering Detection (SEC-MALS)
Automatische name übersetzung:
Standard Test Methode zur Bestimmung der Molekularmasse von Chitosan und Chitosan-Salze von Größenausschlußchromatographie mit Multi-Angle Light Scattering Detection (SEC-MALS)
NORM herausgegeben am 1.8.2013
Bezeichnung normen: ASTM F2602-13
Anmerkung: UNGÜLTIG
Ausgabedatum normen: 1.8.2013
SKU: NS-54219
Zahl der Seiten: 7
Gewicht ca.: 21 g (0.05 Pfund)
Land: Amerikanische technische Norm
Kategorie: Technische Normen ASTM
Keywords:
ICS Number Code 11.120.10 (Medicaments)
Significance and Use | ||||||
4.1 The degree of deacetylation of chitosan, as well at the molar mass and molar mass distribution, determines the functionality of chitosan in an application. For instance, functional and biological effects are highly dependent upon the composition and molar mass of the polymer. 4.2 This test method describes procedures for measurement of molar mass of chitosan chlorides and glutamates, and chitosan base, although it in principle applies to any chitosan salt. The measured molar mass is that for chitosan acetate, since the mobile phase contains acetate as counter ion. This value can further be converted into the corresponding molar mass for the chitosan as a base, or the parent salt form (chloride or glutamate). 4.3 Light scattering is one of very few methods available for the determination of absolute molar mass and structure, and it is applicable over the broadest range of molar masses of any method. Combining light scattering detection with size exclusion chromatography (SEC), which sorts molecules according to size, gives the ability to analyze polydisperse samples, as well as obtaining information on branching and molecular conformation. This means that both the number-average and mass-average values for molar mass and size may be obtained for most samples. Furthermore, one has the ability to calculate the distributions of the molar masses and sizes. 4.4 Multi-angle laser light scattering (MALS) is a technique where measurements of scattered light are made simultaneously over a range of different angles. MALS detection can be used to obtain information on molecular size, since this parameter is determined by the angular variation of the scattered light. Molar mass may in principle be determined by detecting scattered light at a single low angle (LALLS). However, advantages with MALS as compared to LALLS are: (1) less noise at larger angles, (2) the precision of measurements are greatly improved by detecting at several angles, and 4.5 Size exclusion chromatography uses columns, which are typically packed with polymer particles containing a network of uniform pores into which solute and solvent molecules can diffuse. While in the pores, molecules are effectively trapped and removed from the flow of the mobile phase. The average residence time in the pores depends upon the size of the solute molecules. Molecules that are larger than the average pore size of the packing are excluded and experience virtually no retention; these are eluted first, in the void volume of the column. Molecules, which may penetrate the pores will have a larger volume available for diffusion, they will suffer retention depending on their molecular size, with the smaller molecules eluting last. 4.6 For polyelectrolytes, dialysis against the elution buffer has been suggested, in order to eliminate Donnan-type artifacts in the molar mass determination by light scattering 1.1 This test method covers the determination of the molar mass of chitosan and chitosan salts intended for use in biomedical and pharmaceutical applications as well as in tissue engineered medical products (TEMPs) by size exclusion chromatography with multi-angle laser light scattering detection (SEC-MALS). A guide for the characterization of chitosan salts has been published as Guide F2103. 1.2 Chitosan and chitosan salts used in TEMPs should be well characterized, including the molar mass and polydispersity (molar mass distribution) in order to ensure uniformity and correct functionality in the final product. This test method will assist end users in choosing the correct chitosan for their particular application. Chitosan may have utility as a scaffold or matrix material for TEMPs, in cell and tissue encapsulation applications, and in drug delivery formulations. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. |
||||||
2. Referenced Documents | ||||||
|
Historisch
1.4.2014
Historisch
15.12.2010
Historisch
15.5.2009
Historisch
1.8.2010
Historisch
1.6.2011
Historisch
1.2.2008
Wollen Sie sich sicher sein, dass Sie nur die gültigen technischen Normen verwenden?
Wir bieten Ihnen eine Lösung, die Ihnen eine Monatsübersicht über die Aktualität der von Ihnen angewandten Normen sicher stellt.
Brauchen Sie mehr Informationen? Sehen Sie sich diese Seite an.
Letzte Aktualisierung: 2025-01-21 (Zahl der Positionen: 2 220 867)
© Copyright 2025 NORMSERVIS s.r.o.