Wir benötigen Ihre Einwilligung zur Verwendung der einzelnen Daten, damit Sie unter anderem Informationen zu Ihren Interessen einsehen können. Klicken Sie auf "OK", um Ihre Zustimmung zu erteilen.
Standard Table for Reference Solar Spectral Distributions: Direct and Diffuse on 20? Tilted and Vertical Surfaces
Name übersetzen
NORM herausgegeben am 1.7.2021
Bezeichnung normen: ASTM G197-14(2021)
Ausgabedatum normen: 1.7.2021
SKU: NS-1030407
Zahl der Seiten: 36
Gewicht ca.: 108 g (0.24 Pfund)
Land: Amerikanische technische Norm
Kategorie: Technische Normen ASTM
Optics and optical measurements in generalSolar energy engineering
Keywords:
albedo, building, collector, daylight, diffuse radiation, direct radiation, fenestration, glazing, photovoltaic, reflectance, skylight, solar energy, solar spectral irradiance, terrestrial, transmittance, window,, ICS Number Code 17.180.01 (Optics and optical measurement in general),27.160 (Solar energy engineering)
Significance and Use | ||||||||||
5.1?This standard does not purport to address the mean spectral irradiance incident on tilted or vertical fenestration or building-integrated systems over a day, a season, or a year. The spectral irradiance distributions have been chosen to represent a reasonable near-upper limit for solar radiation when these systems are exposed to clear-sky conditions similar to those used to calculate solar heat loads of buildings. The diffuse spectral irradiance distributions can also be used to represent conditions when these systems are shaded from the direct sun. 5.2?Absorptance, reflectance, and transmittance of solar radiation are important factors in studies of light transmission through semi-transparent plates. These properties are normally functions of wavelength, which require that the spectral distribution of the solar flux be known before the solar-weighted property can be calculated. 5.3?To compare the relative performance of competitive products by computerized simulations, or to compare the performance of products subjected to experimental tests in laboratory conditions, a reference standard solar spectral distribution for both direct and diffuse irradiance is desirable. 5.4?The table provides appropriate standard spectral irradiance distributions for determining the relative optical performance of semi-transparent materials and other systems. The table may be used to evaluate components and materials for the purpose of solar simulation where the direct and the diffuse spectral solar irradiances are needed separately. 5.5?The selected air mass value of 1.5 for a plane-parallel atmosphere above a flat earth corresponds to a zenith angle of 48.19?. The SMARTS2 computation of air mass accounts for atmospheric curvature and the vertical density profile of molecules, which results in a solar zenith angle of 48.236?, or an equivalent plane-parallel-atmosphere air mass of 1.50136. The angle of incidence computed by SMARTS for the direct beam irradiance incident on a 20?-tilted plane facing the sun is thus 28.236?. It is 41.764? for a 90?-tilted surface facing the sun. 5.6?A plot of the SMARTS model output for the reference direct radiation on a 20? and 90? tilted surfaces is shown in Fig. 1. A similar plot, but for diffuse radiation, is shown in Fig. 2. 5.7?The input needed by SMARTS to generate the spectra for the prescribed conditions and the 20?-tilted surface is provided in Table 1. The input file for the 90?-tilted surface differs only by one line. This modified line appears in Table 2. 5.8?The total irradiance, integrated over the spectral range 2804000 nm, is 791.07, 93.02, 97.96, and 889.03 W?m-2 for direct, sky diffuse, total diffuse and global radiation incident on the 20? tilted surface, respectively. It is 669.74, 58.66, 140.56, and 810.30 W?m-2 for direct, sky diffuse, total diffuse and global radiation incident on the 90? tilted surface, respectively. 5.9?The availability of the adjunct standard computer software for SMARTS allows one to 1.1?This table provides terrestrial solar spectral irradiance distributions that may be employed as weighting functions to (1) calculate the broadband solar or light transmittance of fenestration from its spectral properties; or 1.2?The data contained in this table were generated using the SMARTS version 2.9.2 atmospheric transmission model developed by Gueymard 1.3?The selection of the SMARTS radiative model to generate the spectral distributions is chosen for compatibility with previous standards (ASTM G173 and G177). The atmospheric and climatic conditions are identical to those in ASTM G173. The environmental conditions are also identical, with only one exception (see sections 4.3 and X1.2). 1.4?The table defines four solar spectral irradiance distributions: 1.4.1?Separate direct and diffuse solar spectral irradiance incident on a sun-facing, 20? tilted surface in the wavelength region from 2804000 nm for air mass 1.5, at sea level. 1.4.2?Separate direct and diffuse solar spectral irradiance incident on a sun-facing, 90? (vertical) tilted surface in the wavelength region from 2804000 nm for air mass 1.5, at sea level. 1.5?The diffuse spectral distribution on a vertical surface facing away from the sun (i.e., shaded), or at any prescribed azimuth away from the sun, may be computed using the model to obtain representative results (i.e., results that fall within an acceptable range of variance). 1.6?The climatic, atmospheric, and geometric parameters selected reflect the conditions to provide a realistic set of spectral distributions appropriate for building applications under very clear-sky conditions, representative of near-maximum solar heat gains in buildings. 1.7?A wide variety of orientations or local environmental conditions is possible for exposed surfaces. The availability of the SMARTS model (as an adjunct to this standard) used to generate the standard spectra allows users to evaluate spectral differences relative to the spectra specified here. 1.8?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||||||
2. Referenced Documents | ||||||||||
|
Wollen Sie sich sicher sein, dass Sie nur die gültigen technischen Normen verwenden?
Wir bieten Ihnen eine Lösung, die Ihnen eine Monatsübersicht über die Aktualität der von Ihnen angewandten Normen sicher stellt.
Brauchen Sie mehr Informationen? Sehen Sie sich diese Seite an.
Letzte Aktualisierung: 2024-11-21 (Zahl der Positionen: 2 206 478)
© Copyright 2024 NORMSERVIS s.r.o.